Ship Detection in SAR Image Based on the Alpha-stable Distribution

نویسندگان

  • Changcheng Wang
  • Mingsheng Liao
  • Xiaofeng Li
چکیده

This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alphastable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Extended Sub-look Analysis In Polarimetric SAR Data For Ship Detection

The monitoring of maritime areas with remote sensing is essential for security reasons and also for the conservation of environment. The synthetic aperture radar (SAR) can play an important role in this matter by considering the possibility of acquiring high-resolution images at nighttime and under cloud cover. Recently, the new approaches based on the sub-look analysis for preserving the infor...

متن کامل

An Automatic Ship Detection Method Based on Local Gray-Level Gathering Characteristics in SAR Imagery

This paper proposes an automatic ship detection method based on gray-level gathering characteristics of synthetic aperture radar (SAR) imagery. The method does not require any prior knowledge about ships and background observation. It uses a novel local gray-level gathering degree (LGGD) to characterize the spatial intensity distribution of SAR image, and then an adaptive-like LGGD thresholding...

متن کامل

A Coarse-to-Fine Approach for Ship Detection in SAR Image Based on CFAR Algorithm

Among ship detection methods for SAR image, constant false alarm rate (CFAR) is the most important one. However, several factors, such as detector parameter and distribution of ocean clutter, affect the performance of CFAR detection. This paper proposes a novel hierarchical complete and operational ship detection approach based on detector parameter estimation and clutter pixel replacement, whi...

متن کامل

The SUMO Ship Detector Algorithm for Satellite Radar Images

Search for Unidentified Maritime Objects (SUMO) is an algorithm for ship detection in satellite Synthetic Aperture Radar (SAR) images. It has been developed over the course of more than 15 years, using a large amount of SAR images from almost all available SAR satellites operating in L-, Cand X-band. As validated by benchmark tests, it performs very well on a wide range of SAR image modes (from...

متن کامل

Superstructure scattering distribution based ship recognition in TerraSAR-X imagery

Benefiting from the improved resolution and polarization information of SAR data, ship recognition has attracted much attention during the last decade. This paper considers the ship recognition in TerraSAR-X imagery. We propose a novel feature extraction algorithm, named Superstructure Scattering Distribution (SSD), by investigating the ship’s superstructure and corresponding electromagnetic sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008